PHASE 1 TRIAL OF DURVALUMAB IN COMBINATION WITH BCG OR EXTERNAL BEAM RADIATION IN BCG-UNRESPONSIVE NON-MUSCLE INVASIVE BLADDER CANCER PATIENTS (HCRN GU16-243: ADAPT-BLADDER TRIAL)

Infinite possibilities.

Noah M. Hahn^{1,2,3}, Michael A. O'Donnell⁴, Jason A. Efstathiou^{5,6}, Marianna Zahurak¹, Gary Rosner¹, Jeff Smith⁷, Max R. Kates^{1,2,3}, Trinity J. Bivalacqua^{1,2,3}, Phuoc T. Tran^{1,2,3,8}, Daniel Y. Song^{1,2,3,8}, Alex S. Baras^{1,2,3,9}, Andres Matoso^{1,2,3,9}, Woonyoung Choi^{1,2,3}, Kellie N. Smith^{1,2,10}, Luigi Marchionni^{1,2,11}, Bridget McGuire^{1,2,3}, Burles Johnson^{1,2,3}, Tanya O'Neal¹, David J. McConkey^{1,2,3}, Tracy L. Rose^{12,13}, Marc Bjurlin^{12,14}, Emerson A. Lim¹⁵, Christopher B. Anderson^{15,16}, Donald L. Lamm¹⁷, Daniel M. Geynisman¹⁸, Mark A. Hallman¹⁹, Eric M. Horwitz¹⁹, Essel Al-Saleem²⁰, David YT Chen²¹, Alexander Kutikov²¹, Gordon Guo^{22,23}, Timothy A. Masterson²⁴, Nabil Adra²⁵, Hristos Z. Kaimakliotis²⁴

¹Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; ⁴University of Iowa Carver College of Medicine, Iowa City, IA; ⁵Massachusetts General Hospital, Boston, MA; ⁶Harvard Medical School, Boston, MA; ⁷Hoosier Cancer Research Network, Indianapolis, IN; ⁸Johns Hopkins School of Medicine, Department of Radiation Oncology, Baltimore, MD; ¹⁰Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹¹Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹⁰Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹⁰Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹⁰Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹⁰Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹⁰Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹⁰Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹⁰Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹⁰Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹⁰Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹⁰Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹⁰Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹⁰Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹⁰Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹¹Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹¹Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹¹Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹¹Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹²Johns Hopkins School of Medicine, Center for Computational Genomics, Baltimore, MD; ¹³Johns Hopkins School of Medicine, Center for Center fo MD; 12 University of North Carolina, Lineberger Comprehensive Cancer Center, Columbia University, New York, NY; 16 Columbia University, Department of Urology, Chapel Hill, NC; 13 University of North Carolina, Department of Urology, Chapel Hill, NC; 14 University, Department of Urology, Chapel Hill, NC; 14 University of North Carolina, Department of Urology, Chapel Hill, NC; 14 University, Department of Urology, Chapel Hill, NC; 14 University of North Carolina, Department of Urology, Chapel Hill, NC; 14 University, Department of Urology, Chapel Hill, Department of Urology, Chapel Hill, Department of Urology, C of Urology, New York, NY; ¹⁷BCG Oncology, Philadelphia, PA; ¹⁹Fox Chase Cancer Center, Department of Hematology, Philadelphia, PA; ²²Indiana University Simon Cancer Center, Department of Radiation Oncology, Indianapolis, IN; ²³University Hospitals Cleveland Medical Center, Cleveland, OH; ²⁴Indiana University Simon Cancer Center, Department of Hematology and Oncology, Indianapolis, IN; ²⁵Indiana University Simon Cancer Center, Department of Hematology and Oncology, Indianapolis, IN; ²⁵Indiana University Simon Cancer Center, Department of Urology, Indianapolis, IN; ²⁵Indiana University Simon Cancer Center, Department of Hematology and Oncology, Indianapolis, IN; ²⁴Indiana University Simon Cancer Center, Department of Hematology and Oncology, Indianapolis, IN; ²⁵Indiana University Simon Cancer Center, Department of Hematology and Oncology, Indianapolis, IN; ²⁶Indiana University Simon Cancer Center, Department of Hematology and Oncology, Indianapolis, IN; ²⁶Indiana University Simon Cancer Center, Department of Hematology, Indianapolis, IN; ²⁶Indiana University Simon Cancer Center, Department of Hematology, Indianapolis, IN; ²⁶Indiana University Simon Cancer Center, Department of Hematology, Indianapolis, IN; ²⁶Indiana University Simon Cancer Center, Department of Hematology, Indianapolis, IN; ²⁶Indiana University Simon Cancer Center, Department of Hematology, Indianapolis, IN; ²⁶Indiana University Simon Cancer Center, Department of Hematology, Indianapolis, IN; ²⁶Indiana University Simon Cancer Center, Department of Hematology, Indianapolis, IN; ²⁶Indiana University Simon Cancer Center, Department of Hematology, Indianapolis, IN; ²⁶Indiana University, IN; ²⁶Indiana University, IN; ²⁷Indiana University, IN; ²⁸Indiana University, IN; ²⁸Indiana University, IN; ²⁹Indiana University, IN; ²⁹Indiana, IN; ²⁹Indiana University, IN; ²⁹Indiana University, IN; ²⁹Indiana Univers

Introduction

- BCG-unresponsive non-muscle invasive bladder cancer (NMIBC) represents a high-risk form of urothelial carcinoma (UC).
- Previous reports implicate upregulation of the PD-1/PD-L1 immune checkpoint pathway as a resistance mechanism to intravesical BCG therapy and improved preclinical tumor control is demonstrated when immune checkpoint therapy is added to radiation therapy. ^{1,2}
- Recent FDA approval of systemic PD-1/PD-L1 immune checkpoint inhibitor (CPI) monotherapy represents a new option for BCG-unresponsive NMIBC patients (pts) with carcinoma in-situ (CIS) who face cystectomy as their primary standard alternative.³
- Despite initial complete responses (CR) to CPI therapy, durable CRs at 12 months are rare in NMIBC pts indicating a need for novel therapy approaches.³
- In metastatic UC, increased objective response rates have been observed with combination immunotherapy approaches.⁴
- Inspired by the 2015 NCI-sponsored NMIBC Clinical Trials Planning Meeting, the ADAPT-BLADDER trial aims to investigate the safety and efficacy of novel combination immunotherapy approaches in NMIBC pts particularly those incorporating anti-PD-L1 durvalumab therapy regimens. Here we report initial phase 1 results.⁵

Materials and Methods

STUDY DESIGN

- Prospective multi-arm, multi-stage, multi-institution phase 1/2 study
- **KEY PHASE 1 ELIGIBILITY**
- Age > 18
- ECOG PS 0-1
- BCG-unresponsive NMIBC with TURBT within 60 days of registration
 - **Recurrent CIS within 12 months of adequate BCG treatment (tx)**
 - Recurrent high-grade Ta/T1 within 6 months of adequate BCG tx
 - Persistent high-grade T1 at first disease evaluation
 - Prostatic urethral involvement
 - Adequate BCG defined at least 5 of 6 doses of initial induction BCG + at least 2 of 3 doses of maintenance or at least 2 of 6 doses of a second induction course
- Pts who are BCG-unresponsive at any time point in their tx history are eligible
- Pts with prostatic urethral NMIBC and upper tract non-invasive tumors are eligible
- Adequate organ function (CrCl >= 30 ml/min)

PRIMARY ENDPOINT

- Determine the recommended phase 2 dose (RP2D) of each regimen SECONDARY ENDPOINTS
- Complete response (CR) rate of each regimen
- 6-month recurrence free survival (6m RFS) of each regimen
- Safety and toxicity profiles of each regimen studied
- **TERTIARY ENDPOINTS**
- Durability of response (12m and 24m RFS)
- Association between presences of CIS and clinical outcomes
- Association between tumor DNA and RNA genomic signatures and clinical outcomes
- Effect of durvalumab treatment regimens on tumor, peripheral blood mononuclear cell (PBMC), and plasma pharmacodynamic measures (T-cell receptor sequence signatures, immune cell subsets, cytokines)
- Exploratory associations between tumor DNA methylation signatures and circulating antibody profiles with clinical outcomes

Materials and Methods (Continued)

GU16-243 ADAPT-BLADDER Trial – Phase 1 Schema

STUDY TREATMENTS

- Durvalumab (D) 1120 mg iv d1 on q21d cycle x 8 cycles
- TICE BCG 50 mg intravesically weekly x 6, maintenance per urologist's discretion
- EBRT to whole bladder in 3 separate 6 Gy fractions on days 1, 3, 5 of cycle 1 only **DOSE LIMITING TOXICITY (DLT) DEFINITION**
- Any grade 3-4 toxicity in first 42 days of tx (exceptions grade 3 hypothyroidism, grade 3 diarrhea/rash/urinary symptoms/lab abnormalities that resolve < 7 days)
- Any grade 2 toxicity in first 42 days of tx due to study tx that delays tx > 21 days

	All Cohorts	Cohort 1	Cohort 2	Cohort 3
	(N=28)	(D)	(D + BCG)	(D + EBRT)
		(N=3)	(N=13)	(N=12)
Age, Median (IQR)	74.0 (9.0)	72.0 (5.5)	74.0 (6.0)	74.0 (11.2)
Gender, n (%)				
Male	23 (82.1)	3 (100.0)	10 (76.9)	10 (83.3)
Female	5 (17.9)	0 (0.0)	3 (23.1)	2 (16.7)
Race, n (%)				
Caucasian	26 (92.9)	2 (66.7)	12 (92.3)	12 (100.0
African-American	1 (3.6)	0 (0.0)	1 (7.7)	0 (0.0)
Asian	1 (3.6)	1 (33.3)	0 (0.0)	0 (0.0)
ECOG PS, n (%)				
0	22 (78.6)	1 (33.3)	10 (76.9)	11 (91.7)
1	6 (21.4)	2 (66.7)	3 (23.1)	1 (8.3)
Prior BCG regimens, n(%)				
1	6 (21.4)	1 (33.3)	2 (15.4)	3 (25.0)
2	12 (42.9)	0 (0.0)	9 (69.2)	3 (25.0)
3+	10 (35.7)	2 (66.7)	2 (15.4)	6 (50.0)

Table 1: PATIENT DEMOGRAPHICS

(D = Durvalumab; BCG = TICE BCG; EBRT = External Beam Radiation)

	All Cohorts (N=28)	Cohort 1 (D) (N=3)	Cohort 2 (D + BCG) (N=13)	Cohort 3 (D + EBRT) (N=12)
Pure Papillary, n (%)	11 (39.3)	1 (33.3)	5 (38.5)	5 (41.7)
Та	4 (14.3)	0 (0.0)	3 (23.1)	1 (8.3)
T1	7 (25.0)	1 (33.3)	2 (15.4)	4 (33.3)
Concurrent Papillary + CIS, n (%)	3 (10.7)	1 (33.3)	1 (7.7)	1 (8.3)
Ta + CIS	2 (7.1)	1 (33.3)	1 (7.7)	0 (0.0)
T1 + CIS	1 (3.6)	0 (33.3)	0 (0.0)	1 (8.3)
Pure CIS, n (%)	14 (50.0)	1 (33.3)	7 (53.8)	6 (50.0)

Table 2: BASELINE TUMOR STAGES

(D = Durvalumab; BCG = TICE BCG; EBRT = External Beam Radiation)

DISEASE ASSESSMENTS

- Cystoscopy, urine cytology and for-cause biopsies at 3 months; cystoscopy, urine cytology and mandatory bladder biopsy at 6 months; long-term tumor assessments per urologist's discretion
- Deparaffinization and DNA/RNA isolation was performed per manufacturer kit (Qiagen AllPrep DNA/RNA FFPE) instructions
- Library prep and RNA whole transcriptome sequencing was performed using lon Torrent's AmplisegRNA platform (Thermo Fisher, Inc) and an S5XL sequencer (Thermo Fisher, Inc)
- T-cell receptor sequencing was performed using the ImmunoSeq platform (Adaptive **Biotechnologies**)

STATISTICAL CONSIDERATIONS

- Confidence intervals will be reported for CR rate, 6m RFS rate, and toxicities
- Exploratory associations between clinical outcomes and translational investigations will be analyzed by Kaplan-Meier curves, log-rank tests, and univariate Cox regression models.

Results

		Calcula	Cabauta	Calcard 2		
		Conort I				Recommended
		ע)	(D + BCG)	(D + EBRT)		<u>Incconnicinaca</u>
Toxicity	Grade	N, (%)	N, (%)	N, (%)	DLT Event	Phase 2 Doses
Lipase increased	4	0 (0.0)	0 (0.0)	1 (8.3)	No	
UTI	3	1 (33.3)	0 (0.0)	0 (0.0	No	D – 1120 mg iv d1 on
Hyperglycemia	3	0 (0.0)	1 (7.7)	1 (8.3)*	No	q21d cycle
Myocardial Infarction	3	0 (0.0)	1 (7.7)	0 (0.0)	No	BCG – 50 mg TICE BCG
ALT increased	3	0 (0.0)	0 (0.0)	1 (8.3)*	Yes	weekly x 6
AST increased	3	0 (0.0)	0 (0.0)	1 (8.3)*	Yes	EBRT – 6 Gv x 3 on
Lipase increased	3	0 (0.0)	0 (0.0)	1 (8.3)*	No	d1,3,5 c1 only
Pneumonitis	3	0 (0.0)	0 (0.0)	1 (8.3)	No	
Maculopapular rash	3	0 (0.0)	0 (0.0)	1 (8.3)**	No	

Table 3: ALL GRADE 3-4 TOXICITY EVENTS

(D = Durvalumab; BCG = TICE BCG; EBRT = External Beam Radiation; *Possibly treatment related; **Definitely treatment related; All other attributions unlikely or unrelated)

Figure 1: COMPLETE RESPONSE RATE at 3- and 6-MONTHS

Results (Continued)

Figure 2: BASELINE TUMOR AND STROMA GENE EXPRESSION SIGNATURES IN **RESPONDING vs NON-RESPONDING PATIENTS**

(3A – Baseline T-cell Receptor Clonality Responders vs Non-responders; 3B – C1D8 vs C1D1 T-cell Receptor Clonality (All patients))

Figure 3: T-CELL RECEPTOR CLONALITY ANALYSIS

(3A – Baseline T-cell Receptor Clonality Responders vs Non-responders; 3B – C1D8 vs C1D1 T-cell Receptor Clonality (All patients))

Conclusions

- Durvalumab in combination with intravesical BCG therapy or EBRT can be safely administered to NMIBC patients.
- Complete response rates in the treated BCG-unresponsive NMIBC population are promising with no unexpected adverse events observed.
- Preliminary translational investigations suggest decreased response in luminal, non-inflamed tumors with no appreciable changes in PBMC TCR clonality at a very early post-treatment time point.
- Longer-term follow up is need to assess the durability of observed responses.
- The multi-arm, multi-stage ADAPT-BLADDER study presents an attractive trial design to optimize assessment of future NMIBC combination strategies.

References

- 1. Inman BA et al, Cancer 2007;109:1499-1505
- 2. Fukumoto K et al, Ann Surg Oncol 2018;25(8):2484-91 3. Keytruda (Pembrolizumab) Full Prescribing Information, accessed 9/2/20

4. Powles T et al, ESMO 2020, abstract 6970

5. Lerner S et al, Bladder Cancer 2016;2(2):165-202